

Sension+ pH combination stainless steel puncture electrode 5231 for Food Applications

Product #: LZW5231.97.0002

ZAR Price: Contact Hach

pH combination puncture electrode 5231 with one ceramic and one open diaphragm and solid electrolyte. Stainless steel body. Range 2-14 pH, 0-80 °C. S7 screw cap.

This electrode is suitable for semisolid food samples, e.g. cheeses, meats, fish, fruits, bread doughs, etc. The encapsulated reference ensures high stability and long lifetime.

Puncture electrode for semisolid food samples.

316 stainless steel body, pH membrane with puncture design.

High stability and long lifetime

Encapsulated Ag/AgCl reference system

Specifications

Accuracy: 0.002 pH with MM374 Meter

Connector: Screw cap S7
Electrode Type: Laboratory

Electrolyte: KCl + Glycerine

Filling Solution: Non-refillable solid polymer

Material: Sensor Body: 316 Stainless Steel

Operating temperature range: 0 - 80 °C

Parameter: pH

Probe Junction: 1 ceramic, 1 open

Range: 2 - 14 pH Sensor Type : Glass

Special Features: The encapsulated reference and the two diaphragms ensure high stability and long lifetime. The

glycerine containing electrolyte ensures suitable flow rates for viscous samples.

Storage conditions: Strorage solution: LZW9512.99

Temperature Range: 0 - 80 °C
Warranty: 6 months

•	AS7 cable / 1M / BNC for instruments w/ BNC connector (Item LZW9055.99)